Setting Up a Highly Available Kubernetes Cluster: A Step-by-Step Guide

Setting Up a Highly Available Kubernetes Cluster: A Step-by-Step Guide

Table of contents

Show less

In today's digital world, high availability (HA) is essential. This is especially important in Kubernetes clusters, where keeping your applications running despite infrastructure failures is crucial. In this blog, we'll explore how to set up a highly available Kubernetes (K8s) cluster. Whether you're a DevOps enthusiast or an experienced cloud architect, this guide will help you understand the importance of HA and show you the steps to set it up on a self-hosted Kubernetes cluster.

Why Do You Need a Highly Available Kubernetes Cluster?

A standard Kubernetes cluster usually has a single master node that manages multiple worker nodes. The master node handles important tasks like scheduling pods, maintaining the cluster state, and managing the API server. If this master node fails, the entire cluster can go down, causing application downtime—a situation no business wants.

To avoid this risk, we set up a highly available Kubernetes cluster. In an HA setup, multiple master nodes share the load, ensuring that even if one or more master nodes fail, the cluster keeps running. This redundancy is achieved through a concept known as quorum, which we'll explain in detail later.

Understanding Quorum in HA Clusters

The concept of quorum is vital in HA clusters. Quorum refers to the minimum number of master nodes required to make decisions in the cluster. If the number of active master nodes falls below this threshold, the cluster can no longer function correctly.

Calculating Quorum

To calculate the quorum, you can use the following formula:

Quorum = floor(n/2) + 1

Where n is the total number of master nodes. Let's look at a couple of examples to understand this better:

3 Master Nodes Cluster:

  • Quorum = floor(3/2) + 1 = 1 + 1 = 2

  • If one master node fails, the remaining two nodes can still make decisions, keeping the cluster operational.

5 Master Nodes Cluster:

  • Quorum = floor(5/2) + 1 = 2 + 1 = 3

  • Even if two master nodes fail, the cluster remains functional as long as the remaining three nodes are active.

In essence, the quorum ensures that the cluster can continue operating correctly even in node failures.

Setting Up the HA Kubernetes Cluster

Prerequisites:

Before you begin, ensure you have the following virtual machines (VMs) set up:

  • One VM for HAProxy Load Balancer: HAProxy will distribute the load among the master nodes.

  • Three VMs for Master Nodes: These nodes will manage the worker nodes.

  • Two VMs for Worker Nodes: These nodes will run the application workloads.

Lab Setup:

  1. Setting Up the Virtual Machines

First, we'll create the necessary virtual machines using Terraform. Below is a sample terraform configuration:

Once you clone repo then go to folder "https://github.com/vikranth18devops/HA-K8s-Cluster)/k8s-terraform-setup*"* and run the terraform command.

cd k8s-terraform-setup/
$ ls -l
total 20
drwxr-xr-x 1 bsingh 1049089    0 Aug 11 11:43 HA_proxy_LB/
drwxr-xr-x 1 bsingh 1049089    0 Aug 11 11:46 Master_Worker_Setup/
-rw-r--r-- 1 bsingh 1049089  562 Aug 11 11:39 main.tf

You need to run main.tf file using the following terraform command note-- make sure you will run main.tf not from inside the folders (HA_proxy_LB, Master_Worker_Setup)

cd \07.Real-Time-DevOps-Project(Fully_HA-Terraform-III)\k8s-terraform-setup


Mode                 LastWriteTime         Length Name
----                 -------------         ------ ----
da---l          11/08/24  11:43 AM                HA_proxy_LB
da---l          11/08/24  11:46 AM                Master_Worker_Setup
-a---l          09/08/24   4:03 PM            482 .gitignore
-a---l          11/08/24  11:39 AM            562 main.tf

# Now, run the following command.
terraform init
terraform fmt
terraform validate
terraform plan
terraform apply --auto-approve

Server Name

Private IP Address

Public IP Address

OS

LB-Proxy

192.168.1.100

Ubuntu 24.04 LTS

M01

192.168.1.101

Ubuntu 24.04 LTS

M02

192.168.1.102

Ubuntu 24.04 LTS

M03

192.168.1.103

Ubuntu 24.04 LTS

W1

192.168.1.104

Ubuntu 24.04 LTS

W2

192.168.1.105

Ubuntu 24.04 LTS

Configuring the Load Balancer

  • Install HAProxy on your load balancer VM:

            sudo apt update
            sudo apt install haproxy -y
    
    • Configure HAProxy to distribute traffic among the master nodes. Edit the HAProxy configuration file:
    sudo vi /etc/haproxy/haproxy.cfg
  • Add the following lines, replacing MasterNodeIP with the IP addresses of your master nodes:
    # frontend k8s-api
    #     bind *:6443
    #     default_backend k8s-masters

    # backend k8s-masters
    #     balance roundrobin
    #     server master1 MasterNode1IP:6443 check
    #     server master2 MasterNode2IP:6443 check
    #     server master3 MasterNode3IP:6443 check
    frontend kubernetes-frontend
        bind *:6443
        option tcplog
        mode tcp
        default_backend kubernetes-backend

    backend kubernetes-backend
        mode tcp
        balance roundrobin
        option tcp-check
        server master1 <MASTER1_IP>:6443 check
        server master2 <MASTER2_IP>:6443 check
        server master3 <MASTER3_IP>:6443 check

  • Restart HAProxy:
    sudo systemctl restart haproxy

Installing Kubernetes Components

Next, you'll install Docker, kubeadm, kubelet, and kubectl on all master and worker nodes.

  • Create a script to install these components:
    vi install_k8s.sh
  • Add the following content to the script:
    # #!/bin/bash
    # sudo apt-get update -y
    # sudo apt-get install -y apt-transport-https ca-certificates curl
    # sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
    # sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
    # sudo apt-get update -y
    # sudo apt-get install -y docker-ce
    # sudo systemctl start docker
    # sudo systemctl enable docker

    # sudo curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
    # sudo apt-add-repository "deb http://apt.kubernetes.io/ kubernetes-xenial main"
    # sudo apt-get update -y
    # sudo apt-get install -y kubelet kubeadm kubectl
    # sudo apt-mark hold kubelet kubeadm kubectl

    #!/bin/bash
    # To Turning off Swap
    sudo swapoff -a
    sudo sed -i '/ swap / s/^/#/' /etc/fstab
    sudo apt-get update
    sudo apt install docker.io -y
    sudo chmod 666 /var/run/docker.sock
    sudo apt-get install -y apt-transport-https ca-certificates curl gnupg
    sudo mkdir -p -m 755 /etc/apt/keyrings
    curl -fsSL https://pkgs.k8s.io/core:/stable:/v1.30/deb/Release.key | sudo gpg --dearmor -o /etc/apt/keyrings/kubernetes-apt-keyring.gpg
    echo 'deb [signed-by=/etc/apt/keyrings/kubernetes-apt-keyring.gpg] https://pkgs.k8s.io/core:/stable:/v1.30/deb/ /' | sudo tee /etc/apt/sources.list.d/kubernetes.list
    sudo apt update
    sudo apt install -y kubeadm=1.30.0-1.1 kubelet=1.30.0-1.1 kubectl=1.30.0-1.1
  • Run the script on all master and worker nodes:
    chmod +x install_k8s.sh
    ./install_k8s.sh

Initializing the Kubernetes Cluster

Now that the necessary components are installed, you can initialize the Kubernetes cluster on the first master node.

Initialize the first master node (M1):

  • Check Kubelet Status

Run the following command to check the status of the kubelet service:

    sudo systemctl status kubelet
  • Replace LoadBalancerIP with the IP address of your HAProxy load balancer.
    #kubeadm init --control-plane-endpoint "LoadBalancerIP:6443" --upload-certs
    sudo kubeadm init --control-plane-endpoint "LOAD_BALANCER_IP:6443" --upload-certs --pod-network-cidr=10.244.0.0/16
    sudo kubeadm init --control-plane-endpoint "3.91.39.241:6443" --upload-certs --pod-network-cidr=10.244.0.0/16
    Your Kubernetes control-plane has initialized successfully!

    To start using your cluster, you need to run the following as a regular user:

      mkdir -p $HOME/.kube
      sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
      sudo chown $(id -u):$(id -g) $HOME/.kube/config

    Alternatively, if you are the root user, you can run:

      export KUBECONFIG=/etc/kubernetes/admin.conf

    You should now deploy a pod network to the cluster.
    Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
      https://kubernetes.io/docs/concepts/cluster-administration/addons/

    You can now join any number of the control-plane node running the following command on each as root:

      kubeadm join 3.91.39.241:6443 --token omm6m2.m3anj0goqnkpgosx \
            --discovery-token-ca-cert-hash sha256:28eab99ce4615f7f2ef66827f949007cd682f94c61c8de358534a86cd5a2ed56 \
            --control-plane --certificate-key 179f2f0f48103e0d28646450ec5d937dc6abb2bf2be274b8352fef5f5c427410

    Please note that the certificate-key gives access to cluster sensitive data, keep it secret!
    As a safeguard, uploaded-certs will be deleted in two hours; If necessary, you can use
    "kubeadm init phase upload-certs --upload-certs" to reload certs afterward.

    Then you can join any number of worker nodes by running the following on each as root:

    kubeadm join 3.91.39.241:6443 --token omm6m2.m3anj0goqnkpgosx \
            --discovery-token-ca-cert-hash sha256:28eab99ce4615f7f2ef66827f949007cd682f94c61c8de358534a86cd5a2ed56

  • Set up kubectl access:
    mkdir -p $HOME/.kube
    sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
    sudo chown $(id -u):$(id -g) $HOME/.kube/config
  • Install the network plugin (Calico):
    kubectl apply -f https://docs.projectcalico.org/manifests/calico.yaml

Joining Additional Master and Worker Nodes

Retrieve the join command from the output of the kubeadm init command.

  • Join the second and third master nodes using the join command: don't forget to add sudo in front of the command
    sudo kubeadm join LoadBalancerIP:6443 --token <token> --discovery-token-ca-cert-hash sha256:<hash> --control-plane --certificate-key <key>
    sudo kubeadm join 3.91.39.241:6443 --token omm6m2.m3anj0goqnkpgosx \
            --discovery-token-ca-cert-hash sha256:28eab99ce4615f7f2ef66827f949007cd682f94c61c8de358534a86cd5a2ed56 \
            --control-plane --certificate-key 179f2f0f48103e0d28646450ec5d937dc6abb2bf2be274b8352fef5f5c427410

After join second and third master nodes, we have to run the following command on each node.

      mkdir -p $HOME/.kube
      sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
      sudo chown $(id -u):$(id -g) $HOME/.kube/config
  • Join the worker nodes using a similar join command:
    sudo kubeadm join LoadBalancerIP:6443 --token <token> --discovery-token-ca-cert-hash sha256:<hash>
    sudo kubeadm join 3.91.39.241:6443 --token omm6m2.m3anj0goqnkpgosx \
            --discovery-token-ca-cert-hash sha256:28eab99ce4615f7f2ef66827f949007cd682f94c61c8de358534a86cd5a2ed56

Verify the Cluster

Go to M1 node and run the following command

Check the status of all nodes:

    kubectl get nodes

Check the status of all pods:

    kubectl get pods --all-namespaces

By following these instructions, you will have created a highly available Kubernetes cluster with two master nodes, three worker nodes, and a load balancer that distributes traffic across the master nodes. This setting assures that if one master node dies, the other will still process API calls.

Verification (the following command should be run on all master nodes M1, M2 & M3)

Install etcdctl to verify the health check

Install etcdctl using apt:

     sudo apt-get update
     sudo apt-get install -y etcd-client

Verify Etcd Cluster Health, It needs to run on all master nodes.

Check the health of the etcd cluster:

    sudo ETCDCTL_API=3 etcdctl --endpoints=https://127.0.0.1:2379 --cacert=/etc/kubernetes/pki/etcd/ca.crt --cert=/etc/kubernetes/pki/etcd/peer.crt --key=/etc/kubernetes/pki/etcd/peer.key endpoint health

Check the cluster membership:

    sudo ETCDCTL_API=3 etcdctl --endpoints=https://127.0.0.1:2379 --cacert=/etc/kubernetes/pki/etcd/ca.crt --cert=/etc/kubernetes/pki/etcd/peer.crt --key=/etc/kubernetes/pki/etcd/peer.key member list

Verify HAProxy Configuration and Functionality

Configure HAProxy Stats:

  • Add the stats configuration to /etc/haproxy/haproxy.cfg:

        listen stats
            bind *:8404
            mode http
            stats enable
            stats uri /
            stats refresh 10s
            stats admin if LOCALHOST
    

Restart HAProxy:

    sudo systemctl restart haproxy

Check HAProxy Stats:

  • Access the stats page at http://<LOAD_BALANCER_IP>:8404.
    http://3.91.39.241:8404/

Will do the deployment to check the functionality.

Will use this yml file

will go to master 3 create a deploy.yml and paste the following content

    apiVersion: apps/v1
    kind: Deployment # Kubernetes resource kind we are creating
    metadata:
      name: boardgame-deployment
    spec:
      selector:
        matchLabels:
          app: boardgame
      replicas: 2 # Number of replicas that will be created for this deployment
      template:
        metadata:
          labels:
            app: boardgame
        spec:
          containers:
            - name: boardgame
              image: adijaiswal/boardgame:latest # Image that will be used to containers in the cluster
              imagePullPolicy: Always
              ports:
                - containerPort: 8080 # The port that the container is running on in the cluster


    ---

    apiVersion: v1 # Kubernetes API version
    kind: Service # Kubernetes resource kind we are creating
    metadata: # Metadata of the resource kind we are creating
      name: boardgame-ssvc
    spec:
      selector:
        app: boardgame
      ports:
        - protocol: "TCP"
          port: 8080 # The port that the service is running on in the cluster
          targetPort: 8080 # The port exposed by the service
      type: LoadBalancer # type of the service.

will deploy the file from master 3.

    kubectl apply -f deploy.yml

View from Master 1

  •     kubectl get all
        NAME                                        READY   STATUS    RESTARTS   AGE
        pod/boardgame-deployment-6bfc85f56d-82n2z   1/1     Running   0          3m20s
        pod/boardgame-deployment-6bfc85f56d-stswz   1/1     Running   0          3m5s
    
        NAME                     TYPE           CLUSTER-IP    EXTERNAL-IP   PORT(S)          AGE
        service/boardgame-ssvc   LoadBalancer   10.98.2.227   <pending>     8080:32499/TCP   5m38s
        service/kubernetes       ClusterIP      10.96.0.1     <none>        443/TCP          36m
    
        NAME                                   READY   UP-TO-DATE   AVAILABLE   AGE
        deployment.apps/boardgame-deployment   2/2     2            2           5m38s
    
        NAME                                              DESIRED   CURRENT   READY   AGE
        replicaset.apps/boardgame-deployment-6bfc85f56d   2         2         2       3m20s
        replicaset.apps/boardgame-deployment-7d7f76876f   0         0         0       5m38s
    
        # describe the pod if needed.
        ubuntu@ip-172-31-29-116:~$ kubectl describe pod boardgame-deployment-6bfc85f56d-82n2z
        Name:             boardgame-deployment-6bfc85f56d-82n2z
        Namespace:        default
        Priority:         0
        Service Account:  default
        Node:             ip-172-31-18-179/172.31.18.179
        Start Time:       Fri, 09 Aug 2024 07:39:55 +0000
        Labels:           app=boardgame
                          pod-template-hash=6bfc85f56d
        Annotations:      cni.projectcalico.org/containerID: 4980888e7b1752260904286e0611e7a9f01f79d59d03ef76e57380032f9d626d
                          cni.projectcalico.org/podIP: 10.244.224.2/32
                          cni.projectcalico.org/podIPs: 10.244.224.2/32
        Status:           Running
        IP:               10.244.224.2
        IPs:
          IP:           10.244.224.2
        Controlled By:  ReplicaSet/boardgame-deployment-6bfc85f56d
        Containers:
          boardgame:
            Container ID:   containerd://adb82acb13786599710397ad328e021c7c447d656f91ad30334d58b3eb98a8dc
            Image:          adijaiswal/boardgame:latest
            Image ID:       docker.io/adijaiswal/boardgame@sha256:1fc859b0529657a73f8078a4590a21a2087310372d7e518e0adff67d55120f3d
            Port:           8080/TCP
            Host Port:      0/TCP
            State:          Running
              Started:      Fri, 09 Aug 2024 07:40:09 +0000
            Ready:          True
            Restart Count:  0
            Environment:    <none>
            Mounts:
              /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-9hp5f (ro)
        Conditions:
          Type                        Status
          PodReadyToStartContainers   True
          Initialized                 True
          Ready                       True
          ContainersReady             True
          PodScheduled                True
        Volumes:
          kube-api-access-9hp5f:
            Type:                    Projected (a volume that contains injected data from multiple sources)
            TokenExpirationSeconds:  3607
            ConfigMapName:           kube-root-ca.crt
            ConfigMapOptional:       <nil>
            DownwardAPI:             true
        QoS Class:                   BestEffort
        Node-Selectors:              <none>
        Tolerations:                 node.kubernetes.io/not-ready:NoExecute op=Exists for 300s
                                     node.kubernetes.io/unreachable:NoExecute op=Exists for 300s
        Events:
          Type    Reason     Age    From               Message
          ----    ------     ----   ----               -------
          Normal  Scheduled  5m24s  default-scheduler  Successfully assigned default/boardgame-deployment-6bfc85f56d-82n2z to ip-172-31-18-179
          Normal  Pulling    5m24s  kubelet            Pulling image "adijaiswal/boardgame:latest"
          Normal  Pulled     5m11s  kubelet            Successfully pulled image "adijaiswal/boardgame:latest" in 12.748s (12.748s including waiting). Image size: 282836720 bytes.
          Normal  Created    5m10s  kubelet            Created container boardgame
          Normal  Started    5m10s  kubelet            Started container boardgame
        ubuntu@ip-172-31-29-116:~$
    

    since 172.31.18.179 is a worker 2 and will note down the public IP address and will try to open it on the browser.

        http://3.80.108.177:32499/
    

    Test High Availability

    Simulate Master Node Failure: We will run the command on master 02 to double verify.

    • Stop the kubelet service and Docker containers on one of the master nodes to simulate a failure:

          sudo systemctl stop kubelet
          sudo docker stop $(sudo docker ps -q)
      

Verify Cluster Functionality:

  • Check the status of the cluster from a worker node or the remaining master node:

        kubectl get nodes
        kubectl get pods --all-namespaces
    
  • The cluster should still show the remaining nodes as Ready, and the Kubernetes API should be accessible.

    1. HAProxy Routing:

      • Ensure that HAProxy is routing traffic to the remaining master node. Check the stats page or use curl to test:

            curl -k https://<LOAD_BALANCER_IP>:6443/version
        
        ubuntu@ip-172-31-27-21:~$ curl -k https://3.91.39.241:6443/version
        {
          "major": "1",
          "minor": "30",
          "gitVersion": "v1.30.3",
          "gitCommit": "6fc0a69044f1ac4c13841ec4391224a2df241460",
          "gitTreeState": "clean",
          "buildDate": "2024-07-16T23:48:12Z",
          "goVersion": "go1.22.5",
          "compiler": "gc",
          "platform": "linux/amd64"
        }ubuntu@ip-172-31-27-21:~$

Summary

Installing etcdctl and using it to check the health and membership of your etcd cluster is a key step to ensure your high availability (HA) setup is functioning as expected. Furthermore, configuring HAProxy to route traffic effectively and simulating master node failures can help confirm the resilience and high availability of your Kubernetes cluster.

Conclusion

Establishing a highly available Kubernetes cluster guarantees that your applications remain resilient and operational even during infrastructure failures. By following the outlined steps, you can build a strong HA setup with multiple master nodes managed by a load balancer. This configuration is critical for production environments where downtime must be minimized.

Whether you're running mission-critical applications or scaling your infrastructure, a highly available Kubernetes cluster offers a reliable foundation. Keep experimenting, and happy clustering!

Â