Setting Up a Highly Available Kubernetes Cluster: A Step-by-Step Guide
Table of contents
Show less
In today's digital world, high availability (HA) is essential. This is especially important in Kubernetes clusters, where keeping your applications running despite infrastructure failures is crucial. In this blog, we'll explore how to set up a highly available Kubernetes (K8s) cluster. Whether you're a DevOps enthusiast or an experienced cloud architect, this guide will help you understand the importance of HA and show you the steps to set it up on a self-hosted Kubernetes cluster.
Why Do You Need a Highly Available Kubernetes Cluster?
A standard Kubernetes cluster usually has a single master node that manages multiple worker nodes. The master node handles important tasks like scheduling pods, maintaining the cluster state, and managing the API server. If this master node fails, the entire cluster can go down, causing application downtime—a situation no business wants.
To avoid this risk, we set up a highly available Kubernetes cluster. In an HA setup, multiple master nodes share the load, ensuring that even if one or more master nodes fail, the cluster keeps running. This redundancy is achieved through a concept known as quorum, which we'll explain in detail later.
Understanding Quorum in HA Clusters
The concept of quorum is vital in HA clusters. Quorum refers to the minimum number of master nodes required to make decisions in the cluster. If the number of active master nodes falls below this threshold, the cluster can no longer function correctly.
Calculating Quorum
To calculate the quorum, you can use the following formula:
Quorum = floor(n/2) + 1
Where n is the total number of master nodes. Let's look at a couple of examples to understand this better:
3 Master Nodes Cluster:
Quorum = floor(3/2) + 1 = 1 + 1 = 2
If one master node fails, the remaining two nodes can still make decisions, keeping the cluster operational.
5 Master Nodes Cluster:
Quorum = floor(5/2) + 1 = 2 + 1 = 3
Even if two master nodes fail, the cluster remains functional as long as the remaining three nodes are active.
In essence, the quorum ensures that the cluster can continue operating correctly even in node failures.
Setting Up the HA Kubernetes Cluster
Prerequisites:
Before you begin, ensure you have the following virtual machines (VMs) set up:
One
VM for HAProxy Load Balancer: HAProxy will distribute the load among the master nodes.Three
VMs for Master Nodes: These nodes will manage the worker nodes.Two
VMs for Worker Nodes: These nodes will run the application workloads.
Lab Setup:
- Setting Up the Virtual Machines
First, we'll create the necessary virtual machines using Terraform. Below is a sample terraform configuration:
Once you clone repo then go to folder "https://github.com/vikranth18devops/HA-K8s-Cluster)/k8s-terraform-setup*"* and run the terraform command.
cd k8s-terraform-setup/
$ ls -l
total 20
drwxr-xr-x 1 bsingh 1049089 0 Aug 11 11:43 HA_proxy_LB/
drwxr-xr-x 1 bsingh 1049089 0 Aug 11 11:46 Master_Worker_Setup/
-rw-r--r-- 1 bsingh 1049089 562 Aug 11 11:39 main.tf
You need to run main.tf
file using the following terraform command note-- make sure you will run main.tf not from inside the folders (HA_proxy_LB, Master_Worker_Setup)
cd \07.Real-Time-DevOps-Project(Fully_HA-Terraform-III)\k8s-terraform-setup
Mode LastWriteTime Length Name
---- ------------- ------ ----
da---l 11/08/24 11:43 AM HA_proxy_LB
da---l 11/08/24 11:46 AM Master_Worker_Setup
-a---l 09/08/24 4:03 PM 482 .gitignore
-a---l 11/08/24 11:39 AM 562 main.tf
# Now, run the following command.
terraform init
terraform fmt
terraform validate
terraform plan
terraform apply --auto-approve
Server Name | Private IP Address | Public IP Address | OS |
LB-Proxy | 192.168.1.100 | Ubuntu 24.04 LTS | |
M01 | 192.168.1.101 | Ubuntu 24.04 LTS | |
M02 | 192.168.1.102 | Ubuntu 24.04 LTS | |
M03 | 192.168.1.103 | Ubuntu 24.04 LTS | |
W1 | 192.168.1.104 | Ubuntu 24.04 LTS | |
W2 | 192.168.1.105 | Ubuntu 24.04 LTS |
Configuring the Load Balancer
Install HAProxy on your load balancer VM:
sudo apt update sudo apt install haproxy -y
- Configure HAProxy to distribute traffic among the master nodes. Edit the HAProxy configuration file:
sudo vi /etc/haproxy/haproxy.cfg
- Add the following lines, replacing MasterNodeIP with the IP addresses of your master nodes:
# frontend k8s-api
# bind *:6443
# default_backend k8s-masters
# backend k8s-masters
# balance roundrobin
# server master1 MasterNode1IP:6443 check
# server master2 MasterNode2IP:6443 check
# server master3 MasterNode3IP:6443 check
frontend kubernetes-frontend
bind *:6443
option tcplog
mode tcp
default_backend kubernetes-backend
backend kubernetes-backend
mode tcp
balance roundrobin
option tcp-check
server master1 <MASTER1_IP>:6443 check
server master2 <MASTER2_IP>:6443 check
server master3 <MASTER3_IP>:6443 check
- Restart HAProxy:
sudo systemctl restart haproxy
Installing Kubernetes Components
Next, you'll install Docker, kubeadm, kubelet, and kubectl on all master and worker nodes
.
- Create a script to install these components:
vi install_k8s.sh
- Add the following content to the script:
# #!/bin/bash
# sudo apt-get update -y
# sudo apt-get install -y apt-transport-https ca-certificates curl
# sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
# sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
# sudo apt-get update -y
# sudo apt-get install -y docker-ce
# sudo systemctl start docker
# sudo systemctl enable docker
# sudo curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
# sudo apt-add-repository "deb http://apt.kubernetes.io/ kubernetes-xenial main"
# sudo apt-get update -y
# sudo apt-get install -y kubelet kubeadm kubectl
# sudo apt-mark hold kubelet kubeadm kubectl
#!/bin/bash
# To Turning off Swap
sudo swapoff -a
sudo sed -i '/ swap / s/^/#/' /etc/fstab
sudo apt-get update
sudo apt install docker.io -y
sudo chmod 666 /var/run/docker.sock
sudo apt-get install -y apt-transport-https ca-certificates curl gnupg
sudo mkdir -p -m 755 /etc/apt/keyrings
curl -fsSL https://pkgs.k8s.io/core:/stable:/v1.30/deb/Release.key | sudo gpg --dearmor -o /etc/apt/keyrings/kubernetes-apt-keyring.gpg
echo 'deb [signed-by=/etc/apt/keyrings/kubernetes-apt-keyring.gpg] https://pkgs.k8s.io/core:/stable:/v1.30/deb/ /' | sudo tee /etc/apt/sources.list.d/kubernetes.list
sudo apt update
sudo apt install -y kubeadm=1.30.0-1.1 kubelet=1.30.0-1.1 kubectl=1.30.0-1.1
- Run the script on all master and worker nodes:
chmod +x install_k8s.sh
./install_k8s.sh
Initializing the Kubernetes Cluster
Now that the necessary components are installed, you can initialize the Kubernetes cluster on the first master node.
Initialize the first master node (M1
):
- Check Kubelet Status
Run the following command to check the status of the kubelet service:
sudo systemctl status kubelet
- Replace LoadBalancerIP with the IP address of your HAProxy load balancer.
#kubeadm init --control-plane-endpoint "LoadBalancerIP:6443" --upload-certs
sudo kubeadm init --control-plane-endpoint "LOAD_BALANCER_IP:6443" --upload-certs --pod-network-cidr=10.244.0.0/16
sudo kubeadm init --control-plane-endpoint "3.91.39.241:6443" --upload-certs --pod-network-cidr=10.244.0.0/16
Your Kubernetes control-plane has initialized successfully!
To start using your cluster, you need to run the following as a regular user:
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
Alternatively, if you are the root user, you can run:
export KUBECONFIG=/etc/kubernetes/admin.conf
You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
https://kubernetes.io/docs/concepts/cluster-administration/addons/
You can now join any number of the control-plane node running the following command on each as root:
kubeadm join 3.91.39.241:6443 --token omm6m2.m3anj0goqnkpgosx \
--discovery-token-ca-cert-hash sha256:28eab99ce4615f7f2ef66827f949007cd682f94c61c8de358534a86cd5a2ed56 \
--control-plane --certificate-key 179f2f0f48103e0d28646450ec5d937dc6abb2bf2be274b8352fef5f5c427410
Please note that the certificate-key gives access to cluster sensitive data, keep it secret!
As a safeguard, uploaded-certs will be deleted in two hours; If necessary, you can use
"kubeadm init phase upload-certs --upload-certs" to reload certs afterward.
Then you can join any number of worker nodes by running the following on each as root:
kubeadm join 3.91.39.241:6443 --token omm6m2.m3anj0goqnkpgosx \
--discovery-token-ca-cert-hash sha256:28eab99ce4615f7f2ef66827f949007cd682f94c61c8de358534a86cd5a2ed56
- Set up kubectl access:
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
- Install the network plugin (Calico):
kubectl apply -f https://docs.projectcalico.org/manifests/calico.yaml
Joining Additional Master and Worker Nodes
Retrieve the join command from the output of the kubeadm init command.
- Join the second and third master nodes using the join command: don't forget to add sudo in front of the command
sudo kubeadm join LoadBalancerIP:6443 --token <token> --discovery-token-ca-cert-hash sha256:<hash> --control-plane --certificate-key <key>
sudo kubeadm join 3.91.39.241:6443 --token omm6m2.m3anj0goqnkpgosx \
--discovery-token-ca-cert-hash sha256:28eab99ce4615f7f2ef66827f949007cd682f94c61c8de358534a86cd5a2ed56 \
--control-plane --certificate-key 179f2f0f48103e0d28646450ec5d937dc6abb2bf2be274b8352fef5f5c427410
After join second and third master nodes, we have to run the following command on each node.
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
- Join the worker nodes using a similar join command:
sudo kubeadm join LoadBalancerIP:6443 --token <token> --discovery-token-ca-cert-hash sha256:<hash>
sudo kubeadm join 3.91.39.241:6443 --token omm6m2.m3anj0goqnkpgosx \
--discovery-token-ca-cert-hash sha256:28eab99ce4615f7f2ef66827f949007cd682f94c61c8de358534a86cd5a2ed56
Verify the Cluster
Go to M1 node and run the following command
Check the status of all nodes:
kubectl get nodes
Check the status of all pods:
kubectl get pods --all-namespaces
By following these instructions, you will have created a highly available Kubernetes cluster with two master nodes, three worker nodes, and a load balancer that distributes traffic across the master nodes. This setting assures that if one master node dies, the other will still process API calls.
Verification (the following command should be run on all master nodes M1, M2 & M3
)
Install etcdctl to verify the health check
Install etcdctl using apt:
sudo apt-get update
sudo apt-get install -y etcd-client
Verify Etcd Cluster Health, It needs to run on all master nodes.
Check the health of the etcd cluster:
sudo ETCDCTL_API=3 etcdctl --endpoints=https://127.0.0.1:2379 --cacert=/etc/kubernetes/pki/etcd/ca.crt --cert=/etc/kubernetes/pki/etcd/peer.crt --key=/etc/kubernetes/pki/etcd/peer.key endpoint health
Check the cluster membership:
sudo ETCDCTL_API=3 etcdctl --endpoints=https://127.0.0.1:2379 --cacert=/etc/kubernetes/pki/etcd/ca.crt --cert=/etc/kubernetes/pki/etcd/peer.crt --key=/etc/kubernetes/pki/etcd/peer.key member list
Verify HAProxy
Configuration and Functionality
Configure HAProxy Stats:
Add the stats configuration to
/etc/haproxy/haproxy.cfg
:listen stats bind *:8404 mode http stats enable stats uri / stats refresh 10s stats admin if LOCALHOST
Restart HAProxy:
sudo systemctl restart haproxy
Check HAProxy Stats:
- Access the stats page at
http://<LOAD_BALANCER_IP>:8404
.
http://3.91.39.241:8404/
Will do the deployment to check the functionality.
will go to master 3 create a deploy.yml and paste the following content
apiVersion: apps/v1
kind: Deployment # Kubernetes resource kind we are creating
metadata:
name: boardgame-deployment
spec:
selector:
matchLabels:
app: boardgame
replicas: 2 # Number of replicas that will be created for this deployment
template:
metadata:
labels:
app: boardgame
spec:
containers:
- name: boardgame
image: adijaiswal/boardgame:latest # Image that will be used to containers in the cluster
imagePullPolicy: Always
ports:
- containerPort: 8080 # The port that the container is running on in the cluster
---
apiVersion: v1 # Kubernetes API version
kind: Service # Kubernetes resource kind we are creating
metadata: # Metadata of the resource kind we are creating
name: boardgame-ssvc
spec:
selector:
app: boardgame
ports:
- protocol: "TCP"
port: 8080 # The port that the service is running on in the cluster
targetPort: 8080 # The port exposed by the service
type: LoadBalancer # type of the service.
will deploy the file from master 3.
kubectl apply -f deploy.yml
View from Master 1
-
kubectl get all NAME READY STATUS RESTARTS AGE pod/boardgame-deployment-6bfc85f56d-82n2z 1/1 Running 0 3m20s pod/boardgame-deployment-6bfc85f56d-stswz 1/1 Running 0 3m5s NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE service/boardgame-ssvc LoadBalancer 10.98.2.227 <pending> 8080:32499/TCP 5m38s service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 36m NAME READY UP-TO-DATE AVAILABLE AGE deployment.apps/boardgame-deployment 2/2 2 2 5m38s NAME DESIRED CURRENT READY AGE replicaset.apps/boardgame-deployment-6bfc85f56d 2 2 2 3m20s replicaset.apps/boardgame-deployment-7d7f76876f 0 0 0 5m38s # describe the pod if needed. ubuntu@ip-172-31-29-116:~$ kubectl describe pod boardgame-deployment-6bfc85f56d-82n2z Name: boardgame-deployment-6bfc85f56d-82n2z Namespace: default Priority: 0 Service Account: default Node: ip-172-31-18-179/172.31.18.179 Start Time: Fri, 09 Aug 2024 07:39:55 +0000 Labels: app=boardgame pod-template-hash=6bfc85f56d Annotations: cni.projectcalico.org/containerID: 4980888e7b1752260904286e0611e7a9f01f79d59d03ef76e57380032f9d626d cni.projectcalico.org/podIP: 10.244.224.2/32 cni.projectcalico.org/podIPs: 10.244.224.2/32 Status: Running IP: 10.244.224.2 IPs: IP: 10.244.224.2 Controlled By: ReplicaSet/boardgame-deployment-6bfc85f56d Containers: boardgame: Container ID: containerd://adb82acb13786599710397ad328e021c7c447d656f91ad30334d58b3eb98a8dc Image: adijaiswal/boardgame:latest Image ID: docker.io/adijaiswal/boardgame@sha256:1fc859b0529657a73f8078a4590a21a2087310372d7e518e0adff67d55120f3d Port: 8080/TCP Host Port: 0/TCP State: Running Started: Fri, 09 Aug 2024 07:40:09 +0000 Ready: True Restart Count: 0 Environment: <none> Mounts: /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-9hp5f (ro) Conditions: Type Status PodReadyToStartContainers True Initialized True Ready True ContainersReady True PodScheduled True Volumes: kube-api-access-9hp5f: Type: Projected (a volume that contains injected data from multiple sources) TokenExpirationSeconds: 3607 ConfigMapName: kube-root-ca.crt ConfigMapOptional: <nil> DownwardAPI: true QoS Class: BestEffort Node-Selectors: <none> Tolerations: node.kubernetes.io/not-ready:NoExecute op=Exists for 300s node.kubernetes.io/unreachable:NoExecute op=Exists for 300s Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal Scheduled 5m24s default-scheduler Successfully assigned default/boardgame-deployment-6bfc85f56d-82n2z to ip-172-31-18-179 Normal Pulling 5m24s kubelet Pulling image "adijaiswal/boardgame:latest" Normal Pulled 5m11s kubelet Successfully pulled image "adijaiswal/boardgame:latest" in 12.748s (12.748s including waiting). Image size: 282836720 bytes. Normal Created 5m10s kubelet Created container boardgame Normal Started 5m10s kubelet Started container boardgame ubuntu@ip-172-31-29-116:~$
since 172.31.18.179 is a worker 2 and will note down the public IP address and will try to open it on the browser.
http://3.80.108.177:32499/
Test High Availability
Simulate Master Node Failure: We will run the command on master 02 to double verify.
Stop the kubelet service and Docker containers on one of the master nodes to simulate a failure:
sudo systemctl stop kubelet sudo docker stop $(sudo docker ps -q)
Verify Cluster Functionality:
Check the status of the cluster from a worker node or the remaining master node:
kubectl get nodes kubectl get pods --all-namespaces
The cluster should still show the remaining nodes as Ready, and the Kubernetes API should be accessible.
-
HAProxy Routing:
Ensure that HAProxy is routing traffic to the remaining master node. Check the stats page or use curl to test:
curl -k https://<LOAD_BALANCER_IP>:6443/version
ubuntu@ip-172-31-27-21:~$ curl -k https://3.91.39.241:6443/version
{
"major": "1",
"minor": "30",
"gitVersion": "v1.30.3",
"gitCommit": "6fc0a69044f1ac4c13841ec4391224a2df241460",
"gitTreeState": "clean",
"buildDate": "2024-07-16T23:48:12Z",
"goVersion": "go1.22.5",
"compiler": "gc",
"platform": "linux/amd64"
}ubuntu@ip-172-31-27-21:~$
Summary
Installing etcdctl
and using it to check the health and membership of your etcd cluster is a key step to ensure your high availability (HA) setup is functioning as expected. Furthermore, configuring HAProxy to route traffic effectively and simulating master node failures can help confirm the resilience and high availability of your Kubernetes cluster.
Conclusion
Establishing a highly available Kubernetes cluster guarantees that your applications remain resilient and operational even during infrastructure failures. By following the outlined steps, you can build a strong HA setup with multiple master nodes managed by a load balancer. This configuration is critical for production environments where downtime must be minimized.
Whether you're running mission-critical applications or scaling your infrastructure, a highly available Kubernetes cluster offers a reliable foundation. Keep experimenting, and happy clustering!